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Abstract. Two models of diffusion in superconducting percolation networks are studied 
in a one-dimensional system. We use chains of 5 x lo5 sites and study the scaling properties 
of the mean-squared displacement of ‘termites’ which execute random walks on the network, 
mean number of distinct sites visited and mean number of visits to the origin. We find 
that although these quantities can be described by well defined scaling laws, the values of 
the critical exponents appear to depend on the time interval in which the walks are studied. 
We observe at least four different scaling regimes. The implications of these results for 
higher-dimensional systems are discussed. 

The conductivity Z of an alloy in which a fraction p of metallic bonds are superconductors 
(i.e., bonds with zero resistance) and the rest are ordinary conductors (Efros and 
Shklovskii 1976, Straley 1976) is an important problem which has received considerable 
attention. As the percolation threshold pc is approached from below, Z diverges as 
Z - ( p c  - p)-’,  where s is a universal exponent. The critical behaviour of Z is the same 
as that of the dielectric constant of a metal-insulator alloy (Efros and Shklovskii 1976, 
Grannan et a1 1981, Wilkinson et al 1983), and possibly the viscosity of gels (de Gennes 
1979), although this latter possibility has been disputed recently (Sahimi and Goddard 
1985). The exponent s also appears in the absorption coefficient of random metal- 
insulator composites (Bowman and Stroud 1984). To describe the physics of supercon- 
ducting networks de Gennes (1980) suggested that we consider a novel form of random 
walker, called a termite, which performs a normal random walk, i.e. one in which the 
duration of each step is finite, when of the superconducting cluster (on the ordinary 
conductors) but which moves instantaneously when on the superconducting clusters, 
because there is zero potential gradient along a superconducting bond. However, 
because stopping the clock is the only effect of the superconducting clusters, the path 
of the termite is the same as that of a simple random walk. Therefore, one should 
expect no singular behaviour for the diffusion coefficient D of the termite except at 
p = 1. Indeed, Bunde et al (1985) found for de Gennes’s termite that D = (1 - p ) - ’  for 
all dimensionalities d. 

Several variations and modifications of de Gennes’s termite have been recently 
discussed. We consider only two of them which are relevant to the present letter and 
refer the reader to Adler et al (1985) and Bunde et a1 (1985) for more details and for 
a description of other termites. Bunde et a1 (1985) consider a general two-component 
system where bonds have conductances uR with probability p and uA with probability 
1 - p .  From the Einstein relation, it is easily seen that T A / f g  = u R / u A ,  where T A ( T R )  is 
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the characteristic time to travel a distance 1 in the region A(B). It is then argued that 
the transition probability II, for choosing the nearest-neighbour site i ( i  = 1, . . . , z, 
where z is the coordination number of the network) is given by II, = T L 1 / 2 $ T L ’ ,  where 
T;’ = uA or uB depending on whether i is species A or B. If N A  and N B  are the total 
number of steps in A and B sites, then the total elapsed time is t = N A r A +  N B T B .  The 
limit TB + 00 and T~ = 1 describes the termite limit. We refer to this model as the Boston 
termite 1 (BTI ) .  

In the second model the termite is placed at random onto any site of the network 
and then chooses to walk to one of the site’s z nearest neighbours. If the new site is 
an ordinary conductor then one unit of time is recorded and the termite moves to this 
site. If the new site is a superconducting site, then one site of the superconducting 
cluster to which this site belongs is chosen at random and the termite jumps to this 
site; no unit of time is added to the total time in this case. So far as modelling of real 
systems is concerned, this model might be more realistic, because if a particle is on a 
superconducting cluster, there is no reason for its motion to be restricted to nearest- 
neighbour jumps: the superconducting material does not offer any resistance to the 
motion of the particle. This model was recently investigated by Adler et a1 (1985) and 
it is very similar to what Bunde et a1 (1985) call the Boston termite 2 model. We refer 
to this as B T ~ ,  although it was also called the ‘Tel Aviv’ termite by Adler et a1 (1985). 

In this letter we investigate those aspects of BTi and B T ~  which were not considered 
by Adler et a1 (1985) and Bunde et a1 (1985). Specifically, we study the scaling 
behaviour of S ( t ) ,  the mean number of distinct sites visited at time t ,  and M ( t ) ,  the 
mean number of visits to the origin (of the walk). In general we should expect that 

S ( t ) -  t ” ,  (1) 

M (  t )  - t Y ,  ( 2 )  

( R 2 (  t ) )  - t k .  (3) 

and if ( R 2 ( r ) )  is the mean-squared displacement of the termite at time 1, one has 

One important question is whether a, y and k are related. One is also interested in 
the possible relation between a, y and k and the static exponents of percolation such 
as v, the exponent of percolation correlation length and p, the exponent of percolation 
probability, and the conductivity exponents s and p ( p  is the exponent of the 
conductivity of percolation networks of conductors and insulators). A random walk 
fractal dimensionality d k  is also defined by d:. = 2 / k .  If d h  = 2, one has normal 
diffusion, but for d k  # 2 diffusion is anomalous. 

We first point out the similarities and differences between the present problem and 
the ‘ant’ problem, which is the random walk description of diffusion in percolation 
networks of conductors and insulators (de Gennes 1976). In the ant problem the 
walker does not move off the clusters of conducting bonds (sites) since the resistance 
of the insulating part is infinite. Therefore, depending on whether the random walk 
takes place on the largest cluster or on all clusters with the results averaged over all 
clusters, one would have different expressions for S ( t ) ,  M ( t )  and ( R 2 ( t ) ) .  In the 
termite problem, the random walk can be started from any site of the network and 
the termite can move to any site of the system. Therefore, the termite ‘feels’ the 
presence of clusters of different sizes and its motion represents an average over all 
clusters. Coniglio and Stanley (1984), who studied BTI in the limit T~ + 00, proposed that 

d = 2 - S/  V .  (4) 
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However, we believe that (4) is not plausible (except possibly at d = l ) ,  because an 
average over all clusters usually involves the exponent /3 which is missing from (4). 
For the ant problem, if an average is taken over all clusters, one obtains (Angles 
d'Auriac and Rammal 1983) 

a = ( d  -2P/v)/d,  (5)  

where d, = 2 + ( p  - /3)/ U, with d, being the fractal dimension of the random walk of 
the ant. It was recently suggested by Sahimi (1985) that an equation similar to ( 5 )  
might also hold for the termites with d, replaced by dk. However, the precise form 
of dk and whether it is related to other percolation exponents is currently controversial. 
One goal of this letter is to check the validity of this hypothesis. 

Adler er a1 (1985) studied B T ~  in one and two dimensions and argued that instead 
of calculating ( R2( t ) ) ,  as appropriate for the ant problem, it is much more appropriate 
to average over r, for fixed R. This was based on the argument that the relevant physical 
time is not the average time t, for visiting sites at a distance R from the origin, but 
rather the first exit (passage) time T, at which R is reached for the first time. Such an 
averaging was first used by Sahimi et a1 (1983) in their study of mixing (diffusion) in 
flow through random networks near pc .  But as pointed out by Sahimi er a1 (1983) 
such an averaging is usually appropriate if one has normal diffusion; the validity of 
such an averaging for anomalous diffusion is not clear to us. 

We have studied the BTi and B T ~  models in a one-dimensional system. Although 
for some problems in critical phenomena one dimension represents a special case, we 
believe that for the termite problem it is instructive to study it, because in contrast to 
the ant problem which is trivial at d = 1,  the present problem is non-trivial and an 
exact solution is still lacking. Moreover, since all of the percolation exponents at d = 1 
are known exactly, an hypothesis such as (5) can be tested. As there are similarities 
between the present problem and some well studied random walk problems, a com- 
parison between these problems can shed light on scaling properties of the termites. 
We will report the results of our study of the problem in higher-dimensional systems 
in a future paper. 

We used linear chains of 5 x lo5 sites with periodic boundary condition. For each 
independent realisation of the chain we used 200 particles and between 6 to 25 
realisations were made. Most of our simulations were done at p = 0.95 and 0.97. In 
any Monte Carlo simulations of diffusion in percolation networks one has to distinguish 
between the regime in which R < t p ,  and the one in which R >  tp, where tp is the 
correlation length. For the ant problem one has d, = 2 ( k  = 1 )  if R >> tp, whereas d, > 2 
if R < tp. One might anticipate similar behaviour for the termite problem. However, 
as we show below, at least in one dimension such behaviour is not observed and dk # 2 
even when R > > t p .  It is not obvious whether such a phenomenon would also be 
observed in higher-dimensional systems. 

Monte Carlo simulations of the B T ~  model in one dimension are very difficult 
because for p close to unity the random walker can take very long jumps and, therefore, 
it is difficult to observe the regime R < tP (where 5, is of the order of ( 1  - p ) - ' ) .  On 
the other hand, for lower values of p ,  &, is very small and for most particles R > tp. 
Thus simulations of this model at d = 1 can yield information mainly about the R > tp 
regime. Very close t o p  = 1 there are very large clusters of superconducting bonds(sites) 
and the termite can take very long jumps. Therefore, the random walk resembles a 
ballistic motion. For such a motion it is known that at very long times one has 
( R2(  r)>- t2  (i.e., dk = 1 ) .  Indeed, our results presented in figure 1 show that for t > 10 
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Figure 1. Dependence on time f of the mean-squared displacement (R2) in the BTZ model. 
0, p = 0.99; A, p = 0.97. 

both sets of data yield d k  2: 1. For p = 0.99 we obtain k = 2.02 f 0.07, while our data 
for p = 0.97 yield k = 2.047 * 0.045 (the error estimates are statistical only). The result 
dG, = 1 is consistent with equation (4), although (4) is supposed to hold for R < &, 
which is not the case here and hence the agreement is perhaps accidental. For t < 10 
both curves in figure 1 yield d & = $  (although the data for p =0.97 show large fluctu- 
ations). Adler et a1 (1985) reported d k = $  for all times, whereas we observe at least 
two distinct scaling regimes. 

In figure 2 we present the results for S (  t )  and M (  t )  for the B T ~  model. Once again 
there are at least two distinct scaling regimes. For t > 10 and at p = 0.99 we find 
a = 0.97 f 0.02, whereas for shorter times we find a = 0.75 * 0.01. Similar values are 
found at p = 0.97. It is therefore reasonable to assume that a = 1 at long times, whereas 
a =; for shorter times. I f  this is correct, the results for S ( t )  would be completely 
consistent with equation (5) ,  since we found d k =  1 and $ for long and short times, 
respectively. The results for M (  t )  show similar trends. At long times M (  t )  approaches 
a constant value, i.e. y = 0, whereas at shorter times we find y = 0.247 * 0.030 = 4. These 
values are consistent with y = 1 - a, which holds for the ant problem. The results are 
also completely consistent with the expressions for S( t )  and M( t )  which were proposed 
by Sahimi (1985). We also note that superconducting percolation networks are 
examples of antifractals recently discussed by Pandey (1984). These are disordered 
systems in which diffusion processes are faster than normal (i.e., d ;  < 2), in contrast 
with fractals (e.g., percolation clusters of conducting bonds and lattice animals) in 
which diffusion processes are slower than normal (i.e., d L >  2). 

Monte Carlo simulations of the BTi model were carried out for the conductivity 
ratios, uB/uA = lo2 and lo4. The results for ( R 2 (  t ) )  at p = 0.99 are presented in figure 
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Figure 2. Dependence on time t of the mean number of distinct sites visited S( I) and the 
mean number of visits to the origin M( I )  in the BT2 model. 0, p = 0.99; A p = 0.97. 
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Figure 3. Dependence on time t of the mean-squared displacement ( R 2 )  in the BTI model 
at p = 0.99. 0, u,/uA = lo4; A ,  uB/uA = 10’. 

3 .  There are at least two distinct scaling regimes. For t < 10 and for uB/uA= lo4 we 
obtain k = $, whereas for t > 10 we find k =i: 4. Lower or higher values of uB/uA yield 
similar results, although the value of k at short times appears to depend on uB/uA. 

This is not a totally unexpected result because one expects k to approach 1 as uB/uA 

is lowered to unity. The reason for the slow growth of ( R 2 ( t ) )  with t is perhaps as 
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follows. For p close to unity there are large clusters of good conductors connected to 
each other by small islands of poor conductors. The termite performs a symmetric 
random walk within these clusters. If it hits the boundaries of the cluster, since its 
transition probability for leaving the cluster is much smaller than the probability of 
being reflected at  the boundaries and staying within the cluster, the termite’s motion 
is essentially confined to the original cluster and therefore ( R Z ( f ) )  grows with f very 
slowly. At p = 1, one has a crossover to the symmetric random walks on a linear chain 
with k =  1. 

The results for S (  t )  and M (  t )  at p = 0.99 and  two values of aB/ (+A are shown in 
figure 4. Here M ( f )  appears to grow with t faster than S ( f ) ,  in contrast with the B T ~  

10’ 

- c 
10’ 

f 

Figure 4. Dependence on time t of the mean number of distinct sites visited S ( t )  (broken 
curves) and the mean number of visits to the origin M ( r )  (full curves) in the BTI model 
at p=0.99. 0, uB/uA= lo4; A, uB/uA= 10’. 

model and  the ant problem. The reason is again in the confinement of the termite to 
its original cluster with occasional transition to regions of lower conductivity. This 
means that the termite visits the origin of its motion very frequently, whereas it visits 
very few new sites after exploring the original cluster. The slopes of the curves in 
figure 4 appear to depend on (+g/(+A, consistent with the behaviour of (I?’([)). The 
slopes of S (  M )  increase(decrease) with decreasing (+B/ (+A since one should have 
(Y = y = $  for (+,/(+A= 1. One can also observe at least two scaling regimes for short 
and  long times. The two different regimes disappear as (+B/(+A decreases, as expected. 
The values of (Y and y appear again to obey the law ( ~ + y = l .  For example for 
aB/ (+A = 100 we get y --- 0.58 and (Y = 0.44 for short times which, within their statistical 
errors, obey this law. Therefore, this aspect of the termite problem is similar to that 
of ants. 

In summary, we have performed Monte Carlo simulations of two random walk 
models of diffusion in superconducting percolation networks. The results show that 
in one dimension the random walk is described by scaling laws whose critical exponents 
depend on the model and  on the time interval in which the walk is studied. This is 
consistent with the recent work of Bunde and  Stauffer (1985). These authors claim 
that the motion of termites cannot be described in the general case by a two-argument 
scaling function and one has to use scaling functions with at least three arguments. 
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Whether the qualitative behaviour of termites found in one dimension persists in 
higher-dimensional systems remains to be investigated. But we believe that for the BTZ 
model d k  is less than two for any dimensionality. We also believe that two- and 
three-dimensional systems must be studied separately since the duality relation p = s 
which holds in two dimensions may simplify the form of the scaling functions and 
give the impression that two- and three-dimensional systems may be described by 
scaling functions with fewer arguments. 

We would like to thank Joan Adler, Armin Bunde, Gene Stanley and Dietrich Stauffer 
for stimulating correspondence. We are particularly grateful to Dietrich Stauff er for 
warning us about the danger of representing the data with effective exponents over 
the entire time interval. This work was supported by a grant from the University of 
Southern California Faculty Research Innovation Fund. 
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